88 research outputs found

    Assessment of India’s virtual water trade in major food products

    Get PDF
    This paper analyzes virtual water trade flows through food products between India and its trading partners. It relies on the gravity model of trade and estimates a panel data fixed effect regression to identify drivers of virtual water trade. Our results show that India was the net exporter of virtual water in food products during 1990-2013; however later it turned out to be its net importer. Further our analysis shows distance between trading partners as the primary driver of virtual water trade. India prefers trading with its neighbours to reduce transportation costs. The availability of arable land and water used in crop production are limiting factors for production of food crops and thus act as essential factors in deciding the virtual water trade flows. These findings indicate that resource endowment factors influence bilateral virtual water trade flows

    Robustness and Generalization

    Full text link
    We derive generalization bounds for learning algorithms based on their robustness: the property that if a testing sample is "similar" to a training sample, then the testing error is close to the training error. This provides a novel approach, different from the complexity or stability arguments, to study generalization of learning algorithms. We further show that a weak notion of robustness is both sufficient and necessary for generalizability, which implies that robustness is a fundamental property for learning algorithms to work

    Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites

    Get PDF
    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in S. cerevisiae is qualitatively consistent with a `barrier nucleosome model', in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model, with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia

    Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints : computational and experimental approaches

    Get PDF
    The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that generated at this clearance joints are computed by considered several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based for cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. In addition, an experimental apparatus is use to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.Fundação para a Ciência e a Tecnologia (FCT

    Positional variations among heterogeneous nucleosome maps give dynamical information on chromatin

    Get PDF
    Although nucleosome remodeling is essential to transcriptional regulation in eukaryotes, little is known about its genome-wide behavior. Since a number of nucleosome positioning maps in vivo have been recently determined, we examined if their comparisons might be used for obtaining a genome-wide profile of nucleosome remodeling. Using seven yeast maps, the local variability of nucleosomes, measured by the entropy, was significantly higher in a set of reported unstable nucleosomes. The binding sites of four transcription factors, known as the remodeling factors, were distinctively high both in entropy and linker ratio, whereas those of Yhp1, their potential inhibitor, showed the lowest values in both of them. Taken together, our map shows the general information of nucleosome dynamics reasonably well. The “nucleosome dynamics” map provides the new significant correlation with the degree of expression variety instead of their intensity. Furthermore, the associations with gene function and histone modification were also discussed here

    Transcriptional interaction-assisted identification of dynamic nucleosome positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleosomes regulate DNA accessibility and therefore play a central role in transcription control. Computational methods have been developed to predict static nucleosome positions from DNA sequences, but nucleosomes are dynamic in vivo.</p> <p>Results</p> <p>Motivated by our observation that transcriptional interaction is discriminative information for nucleosome occupancy, we developed a novel computational approach to identify dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic sequence information. Our approach successfully identified experimentally determined nucleosome positioning dynamics available in three cellular conditions, and significantly improved the prediction accuracy which is based on sequence information alone. We then applied our approach to various cellular conditions and established a comprehensive landscape of dynamic nucleosome positioning in yeast.</p> <p>Conclusion</p> <p>Analysis of this landscape revealed that the majority of nucleosome positions are maintained during most conditions. However, nucleosome occupancy at most promoters fluctuates with the corresponding gene expression level and is reduced specifically at the phase of peak expression. Further investigation into properties of nucleosome occupancy identified two gene groups associated with distinct modes of nucleosome modulation. Our results suggest that both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.</p

    The Yin and Yang of Yeast Transcription: Elements of a Global Feedback System between Metabolism and Chromatin

    Get PDF
    When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions
    corecore